- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000200000000000
- More
- Availability
-
11
- Author / Contributor
- Filter by Author / Creator
-
-
Khan, Mohammad Emtiyaz (2)
-
Cong, Bai (1)
-
Duruisseaux, Valentin (1)
-
Ghosh, Avrajit (1)
-
Leok, Melvin (1)
-
Lin, Wu (1)
-
Möllenhoff, Thomas (1)
-
Nielsen, Frank (1)
-
Ravishankar, Saiprasad (1)
-
Schmidt, Mark. (1)
-
Tao, Molei (1)
-
Wang, Rongrong (1)
-
Yokota, Rio (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available September 18, 2026
-
Lin, Wu; Duruisseaux, Valentin; Leok, Melvin; Nielsen, Frank; Khan, Mohammad Emtiyaz; Schmidt, Mark. (, Proceedings of Machine Learning Research)Riemannian submanifold optimization with momentum is computationally challenging because, to ensure that the iterates remain on the submanifold, we often need to solve difficult differential equations. Here, we simplify such difficulties for a class of structured symmetric positive-definite matrices with the affine-invariant metric. We do so by proposing a generalized version of the Riemannian normal coordinates that dynamically orthonormalizes the metric and locally converts the problem into an unconstrained problem in the Euclidean space. We use our approach to simplify existing approaches for structured covariances and develop matrix-inverse-free 2nd-order optimizers for deep learning in low precision settings.more » « less
An official website of the United States government

Full Text Available